
Method of Constrained Global OptimizationEric Lewin Altschuler,1 Timothy J. Williams,1 Edward R. Ratner,2 Farid Dowla,1 and Frederick Wooten31Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 945512Dept. of Applied Physics, Stanford University, Stanford, CA 943053Dept. of Applied Science, U. C. Davis/Livermore, PO Box 808, Livermore CA 94551(March 22, 1994)We present a new method for optimization: constrained global optimization (CGO). CGO itera-tively uses a Glauber spin ip probability and the Metropolis algorithm. The spin ip probabilityallows changing only the values of variables contributing excessively to the function to be minimized.We illustrate CGO with two problems|Thomson's problem of �nding the minimum{energy con�g-uration of unit charges on a spherical surface, and a problem of assigning o�ces|for which CGO�nds better minima than other methods. We think CGO will apply to a wide class of optimizationproblems.PACS numbers: 02.60.Pn, 02.70.-c, 02.70.Lq, 41.20.CvIntroduction Optimization problems are important inthe physical sciences [1,2], biological sciences [3], mathe-matics [4], and operations research [5]. Current methodsfor approaching optimization problems include MonteCarlo simulation, analytic methods, symmetry consider-ations, and the method of simulated annealing (SA) [5].Here we present a new method for optimization| themethod of constrained global optimization (CGO). CGO,like SA, makes iterative use of the Metropolis algorithm[6]. CGO uses a Glauber spin ip probability to insurein general that only those variables making excessivelylarge contributions to the function to be minimized areassigned new values at a given iteration, while the val-ues of the other variables remain the same. SA changesthe values of one or more randomly{selected variables ateach iteration.We �rst describe CGO, then illustrate its use on twoproblems| Thomson's Problem of �nding the con�gura-tion of unit charges on a the surface of a sphere with min-imum potential energy, and the o�ce assignment prob-lem (OAP)|for which CGO obtained better results thanother methods.Description of Method of Constrained Global Opti-mization Let f be a real valued function of the N vari-ables x1; x2; x3; : : : ; xN . We seek to �nd the values ofx1; : : : ; xN which will minimize f(x1; : : : ; xN ). We de-note (x1; x2; x3; : : : ; xN ) by x. The set of allowed valuesof x may be in�nite (discrete or continuous) or �nite.First begin with some randomly (or otherwise) choseninitial values for the variables, denoted by x0. After this,CGO consists of a three{step process which is iteratedsome given number of times.Step (1): Determine, for each variable xi, whetherx(n+1)i is to remain equal to xni or to change to some othervalue. Select a random number Ri between 0 and 1. IfRi < 1=(1 + exp(�(g(xni )� C)=kT )) (1)

then as described in step (2) a new value will be selectedfor xi; otherwise, x(n+1)i will remain equal to xni . InEq. (1) g is a real{valued function of xi; C is a real num-ber used for all xni for one iteration but which may changeeach iteration; k is a constant (Boltzmann constant); Tis the \temperature" of the system. The right side ofEq. (1) is the Glauber probability of a spin ip and isderived by considering each x(n+1)i to have two states: re-maining equal to xni or not. Then by solving P=+P 6= = 1,and P==P6= = exp(�g(xni )=kT )=exp(�C=kT ) for P 6= weget equation (1).We can consider g(xni ) to be an \energy" associatedwith x(n+1)i remaining equal to xni , and C a threshold en-ergy associated with selecting a new value for x(n+1)i . Thechoice of the function g and the constant C are problem{dependent. For problems based on particle interactionsobeying a linear superposition principle a clear choice isto take g so that f =PNi=1 g(xi). For problems in whichf is not derived from a superposition principle one shouldattempt to choose g so as to divide the \cost" of f amongthe variables. The value of C at a given iteration maydepend on the current values of the variables. In general,increasing C decreases the probability that variables willchange values; decreasing C increases the probability.Step (2): For each xni determined to remain unchangedin step (1), set x(n+1)i = xni . For each xni determined tochange in step (1), choose a new x(n+1)i randomly fromthe set of allowed values. The set of allowed values isproblem dependent. For example, certain problems maylimit the number of variables xi which can have the samevalue. If this is true then special care must be taken inchoosing the fx(n+1)i g. One such procedure for doing thisis illustrated for the o�ce assignment problem below.Step (3): Calculate f(x(n+1)) and perform theMetropolis algorithm: If f(x(n+1)) < f(xn) then thenew arrangement is accepted. If f(x(n+1)) � f(xn) then1



the new arrangement is rejected unless a random num-ber R which is selected is less than exp(�(f(x(n+1)) �f(xn))=T ); if the new arrangement is rejected, x(n+1)i isset back to xni for all i.The three{step process is iterated a certain numberof times at a given temperature, and then the tempera-ture is lowered according to some annealing schedule andthe process iterated at that temperature. Eventually thetemperature becomes so low that the values of the vari-ables fxig become frozen in.Step (2) allows for potentially global rearrangementsof a system, but these arrangements are constrained bystep (1) which in general only allows those variables withexcessively large energies to change values. Also, rear-rangements are ultimately limited by step (3), which ingeneral does not allow moves to values of x with largervalues of f . CGO di�ers from SA in steps (1) and (2),and shares the use of the Metropolis algorithm (step (3))with SA.Thomson Problem Consider N point charges on (thesurface of) a unit conducting sphere, interacting onlythrough their mutual Coulomb forces. What is the con-�guration of the charges for which the Coulombic energy12PNi;j=1;j 6=i 1=jri � rj j is minimized? This question wasoriginally asked by Thomson for 2 � N � 100, [4] andhas since been investigated by many authors [2,7{10].Somewhat surprisingly, it turns out that the con�gura-tion of minimum energy is not the con�guration whichplaces the charges at furthest distance from each other,or the con�guration of greatest symmetry. For example,for 8 charges, the con�guration of minimum energy is nota cube, but a twisted noncubic rectangular parallelpiped[2].For Thomson's problem, we take the function g inEq. (1) equal to g(ri) = 12PNj=1;j 6=i 1=jri � rj j. Forthose charges which change coordinates, we assign newspherical coordinates as �(n+1)i = �ni + �Ri�; �(n+1)i =�ni + �R0i2� (ri � 1;8i); here Ri, and R0i are randomnumbers between 0 and 1, � reduces the maximum angu-lar change in proportion to the cooling schedule, and theadditions are done with the appropriate periodicity. Weuse C = � �maxfg(ri)ji = 1; 2; : : : ; Ng with � = 0:7; theresults are not very sensitive to small changes from thisvalue of �. At each temperature step we consider 100con�gurations (iterations); then we lower the tempera-ture T used in Eq. (1), the Metropolis algorithm, and �,by a factor of 0.9. Finally, we use the �nal con�gura-tion from CGO as input to a conjugate gradient descentalgorithm to reduce the energy as far as possible, usingdouble{precision arithmetic. We repeated the entire pro-cedure from �ve di�erent starting con�gurations for eachnumber of charges.Our results using CGO for 2 � N � 65 con�rm theminimum energy values found previously [7]. We �nd im-provements in previously{found minimum energy values

for most values of N between 66 and 100. We list valueswe believe to be the minimum energies for 66 � N � 100in table I.For some numbers of charges the minimum energy ob-tained by CGO is lower than that obtained by using SA[8], by Monte Carlo simulation [9], or by �nding the con-�guration of minimum energy with a given symmetry[10]. In particular, these results demonstrate that thesymmetry of the con�guration of minimum energy is notalways obvious a priori. The output from CGO is typ-ically well within one tenth of one percent of the �nalminimum energy after applying the conjugate gradient,and this performance of CGO relative to �nal minimumenergy value does not deteriorate with increasing N . Wethink that CGO will be readily applicable to other ionicand molecular structure problems.O�ce Assignment Problem Consider a set of N of-�ces whose centers are located at the 2D coordinatesfr1; r2; : : : ; rNg. These are to be occupied by N peoplewhose interactions|coe�cients of angst|are denoted byfaij ji; j = 1; 2; : : : ; Ng. We seek to minimize the functionA = NXi;j=1;i 6=j aij=jr(i)� r(j)j ;which one can interpret as the total angst of the system.Here, r(i) is the location of the ith person's o�ce, whichmust be one member of the set fr1; r2; : : : ; rNgFor step (1) of CGO, we takeg(r(i)) � Ai = NXj=1;j 6=i aij=jr(i)� r(j)j;which can be considered as the angst felt by individualperson i. We take C = � �maxfAiji = 1; 2; : : : ; Ng with� = 1:2 (With aij values as de�ned below, the resultsdegrade signi�cantly for � above 2.0.) For this prob-lem with g thus de�ned, step (1) of CGO insures thatonly people who are relatively \unhappy" with their of-�ce want to �nd a new o�ce, while those who are happywith their o�ce don't want to move. For step (2) of CGO,we permute those people who want new o�ces in a ran-dom fashion: Choose a random number for each personwho wants a new o�ce. Sort these random numbers, andshadow the sort operations on their o�ce assignments.We consider problems with 20, 30, 40, 60, and 100people. We use random locations ri in the unit square,and we choose the aij randomly between -1 and +1 withaij = aji and aii = 0. We attempt to �nd the minimumvalue of A using CGO and SA with the rearrangementsuggested by Lin and Kernighan [11]. For a given num-ber of people we start both methods from ten di�erentstarting con�gurations. Both methods use the same an-nealing schedule [12]. We try up to 100N arrangementsat a given temperature, stopping if 10N successful moves2



occur at a given temperature. Then we lower the tem-perature by a factor of T1. At the M th annealing step,the temperature is T = T0(T1)M , where T0 is the initialtemperature. For the runs reported here, we use T0 andT1 = 0:9; we anneal for 40 annealing steps, at which tem-perature the con�gurations for both methods were frozenin.We give results in table II. CGO �nds signi�cantlylower values of A, both minimum and mean, than SAusing the Lin{Kernighan rearrangement. The CGO runstake about two{thirds the computer time of the SA runs.We have annealed up to 100 times more slowly for somecases without altering the qualitative results of table II.The Lin{Kernighan rearrangement works exception-ally well for the traveling salesperson problem (TSP), butappears to have di�culties for the OAP. For the TSP theonly relevant distances are those between a city and itsneighbors, while in the OAP a person must consider all ofthe other people, not just neighbors. Perhaps, the Lin{Kernighan rearrangement is optimal for the TSP becauseit allows consideration of changes in distances to neigh-bors at the endpoints of a segment while leaving distancesfor other cities una�ected. But for the OAP changes inangst for people at the endpoints of the reversed or trans-ported segment cannot be considered independently ofthe changes in angst for other people. CGO providesan e�ective method for moving unhappy people, whileleaving the happy ones where they are.Conclusion We have used CGO to improve knownvalues of the minimum potential for Thomson's problemfor many numbers of charges from 66 to 100. For theo�ce assignment problem CGO found signi�cantly lowerresults than SA. We think that CGO will be applicableto a wide class of optimization problems, especially thosewith long range interactions.We thank Bill Rugolsky, Richard Stong, Berni Alder,Tom Slezak, Nick Gentile, and Morris Brody for helpfuldiscussions. Two of the authors, (ELA and ERR) werepartially supported by the Fannie and John Hertz Foun-dation. This work was performed by the Lawrence Liver-more National Laboratory under the auspices of the U. S.Department of Energy under Contract W{7405{Eng{48.
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TABLE II. Comparison of angst values for the o�ce as-signment problem using the method of constrained globaloptimization (CGO) and simulated annealing with theLin{Kernighan rearrangement (SA). N is the number of of-�ces, which is equal to the number of occupants. The columnlabelled \minimum" is the lowest value from ten runs usingdi�erent initial conditions; the column labelled \mean" is theaverage of the ten values.CGO SAN minimum mean minimum mean20 -9.4698 -9.2212 -9.1134 -8.528630 -45.4959 -40.1290 -41.9456 -36.826140 -29.3538 -26.8098 -20.2484 -19.351660 -77.9358 -73.6713 -63.2809 -60.3534100 -144.8887 -139.8323 -108.6005 -100.4544
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